Mammoth Cave National Park

SITE INFORMATION

Country:
United States of America (USA)
Inscribed in: 1981
Criteria:
(vii) (viii) (x)

Site description:

Mammoth Cave National Park, located in the state of Kentucky, has the world's largest network of natural caves and underground passageways, which are characteristic examples of limestone formations. The park and its underground network of more than 560 surveyed km of passageways are home to a varied flora and fauna, including a number of endangered species. © UNESCO
SUMMARY

2014 Conservation Outlook

Good with some concerns

Overall, the conservation outlook for the property can be assessed as good. The current condition of the World Heritage values is generally stable, the threat levels are generally low, and the protection and management standards are very high and intervention measures are mostly effective. There are growing concerns that levels of air and water pollution are increasing and impacting detrimentally on the biota and on visitor enjoyment. Of particular concern is the threat to bat populations from the deadly white-nose fungal disease recently introduced into the property, which may prove extremely difficult to overcome.

Current state and trend of VALUES

Low Concern
Trend: Stable

Overall the current state of World Heritage values in the property is of low concern and the trend is stable. There is growing concern about air and water pollution impacts. Of greatest concern is the recent incidence of the deadly white-nose fungal disease that has the potential to severely reduce the cave bat population and even eliminate some species.

Overall THREATS

High Threat

Threats to the property range from very low to high. Low level threats come from environmental disturbance associated with visitor facilities infrastructure development, and from ecosystem modification, especially suppression of wildfires and flooding of natural underground water systems due to storm water drainage from surrounding residential and industrial areas. Far more serious threats come from neighboring coal-fired power plants that cause air and groundwater pollution, and from the incidence of the deadly white-nose fungal
disease affecting the bat population. The most significant potential threat is from increased air and water pollution due to ongoing industrial development in surrounding areas.

Overall PROTECTION and MANAGEMENT

Mostly Effective

Generally the protection and management of the property is of high standard and very effective. There is strong legal protection at State and Federal level, the property is under public ownership and the stakeholder support is good. The property is well resourced in terms of staff and finance, and management intervention is guided by a series of comprehensive and widely consulted management plans. Monitoring, research, interpretation and education are exemplary. There is some concern over occasional disparity between government ambitions and World Heritage objectives. Of greatest importance for managers is the need to remain vigilant over impacts from urban, industrial and resource development activities outside the property that have the potential to increase above current levels.
FULL ASSESSMENT

Description of values

Values

World Heritage values

► **Superlative examples of natural features in limestone karst terrain.**
 Criterion: (vii)

 The longest cave system in the world, with huge chambers, vertical shafts, stalagmites and stalactites, splendid forms of beautiful gypsum flowers, delicate gypsum needles, rare mirabilite flowers and other natural features that are all superlative examples of their type. No other known cave system in the world offers a greater variety of sulfate minerals. (USA, 1980; IUCN, 1981; Statement of significance, 2006).

► **The world's largest network of natural limestone caves and underground passages.**
 Criterion: (viii)

 The 100 million-year old karst landscape presents nearly every type of cave formation known. Its huge and complex network of cave passages provides a clear, complete and accessible record of the world’s geomorphic and climatic changes. The land surface has all of the classic features of a karst drainage system - a vast recharge area, complex network of underground conduits, sink holes, cracks, fissures, and underground rivers and springs. (USA, 1980; IUCN, 1981; Statement of significance, 2006).

► **The richest known cave biota.**
 Criterion: (ix)

 The property has the greatest diversity of known cave biota numbering over
130 species, of which 14 species of troglobites (animals adapted to living entirely in caves) and troglophiles (animals preferring to live in caves) are endemic. (USA, 1980; IUCN, 1981; Statement of significance, 2006).

Other important biodiversity values

▶ Diverse vegetation and abundant wildlife.

Terrestrial vertebrates include 43 species of mammals, 207 birds, 37 reptiles and 27 amphibians. The temperate deciduous oak-hickory forest community includes 84 tree varieties, 28 shrubs and vines, 29 types of ferns, 209 wildflowers, 67 species of algae, 27 species of fungi and 7 species of bryophyte. (USA, 1980; IUCN, 1981; Statement of significance, 2006).

Assessment information

Threats

Current Threats

High Threat

Threats range from low to high. Low levels of threat come from disturbance by visitors and ecosystem modification, especially suppression of wildfires and flooding of natural underground water systems due to storm water drainage from surrounding residential and industrial areas. The most serious threats are from neighboring coal-fired power plants that cause air and groundwater pollution, and from the incidence of the deadly white-nose fungal disease affecting the bat population.

▶ Commercial/ Industrial Areas

Low Threat

Outside site

Transpark industrial development of 1,600 ha located 12 km from the
property. Concern regarding lack of EIA and assessment of impacts on park waters and air quality. Possibility of oil spill and air pollution. (May et al., 2005; AP, 2006; NPS, 2006).

▶ **Invasive Non-Native/ Alien Species**
 - **High Threat**
 - **Inside site**
 - **Outside site**

The deadly White-nose fungal disease began killing bats in the property since 2013. A response plan includes access restrictions, decontamination requirements for all activities, surveillance and monitoring, and outreach and education. (Bell, 2013; NPS, 2010; NPS, 2011).

▶ **Air Pollution**
 - **High Threat**
 - **Inside site**
 - **Outside site**

The major threat to the property is from mercury contamination caused by emissions from coal-fired power plants. Three new plants are under development within a radius of 300km from the property – an area already containing 40 operating power plants. Plants produce huge quantities of carbon dioxide, sulphur dioxide, nitrogen and mercury. Some bats have up to 10x the mercury level considered safe for people, ozone pollution is considerably above levels known to harm plant life, and particulate matter causing hazy skies reduces vision for scenic viewing. There is groundwater contamination from human and animal waste production, agricultural land runoff and urban storm water discharge. (AP, 2006; May et al., 2005; MCNP, 2013; NPCA, 2013; NPS, 2006).

▶ **Storms/Flooding**
 - **Very Low Threat**
 - **Inside site**

Severe storms result in flooding, causing damage to trails, campsites and roads, and requiring emergency funding (May et al, 2005; NPS, 2003; NPS, 2006).
Tourism/ visitors/ recreation

Low Threat
Inside site

Approx. 650,000 visitors annually. Considerable facilities development. Visitor numbers growing steadily with increasing demands on infrastructure development. (NPS, 2007; NPS, 2009a; USA, 1980).

Fire/ Fire Suppression

Very Low Threat
Inside site
Outside site

Wildfires are imprinted on patterns of vegetation development. Most fires are from arson, careless smoking and campfires, but there are some lightning fires. The authorities include fire suppression among fire management measures. Prescribed fires are considered unlikely to affect nationally protected species or critical habitats in the property (NPS, 2001; NPS, 2009; Olsen et al., 2005). Storm water drainage wells in neighboring areas are causing sinkhole flooding and ground collapse (May et al, 2005).

Potential Threats

Low Threat

Growing levels of pollution from neighboring industrial developments, and their possible impact on natural values in the property, are of major future concern.

Commercial/ Industrial Areas

Low Threat
Inside site
Outside site

Growing levels of pollution from neighboring industrial developments, and their possible impact on natural values in the property, are of major future concern.

Protection and management
Assessing Protection and Management

▶ Relationships with local people
 Highly Effective

 Excellent stakeholder and local community support. Friends of Mammoth Cave National Park, which is a very effective NGO, supports the park management. (IUCN, 1981; NPS, 2009a; USA, 1980).

▶ Legal framework and enforcement
 Highly Effective

 Property is Federal and publically owned land subject to Federal and State protection laws (USA, 1980; IUCN, 1981).

▶ Integration into regional and national planning systems
 Mostly Effective

 Park land use co-ordinated with other State land and resource uses (IUCN, 1981; USA, 1980).

▶ Management system
 Highly Effective

 Master plan, strategic plan and management plan along with several subsidiary plans such as business plan, water resources plan, fire plan, trail management plan etc. (NPS, 2001; NPS, 2003; NPS, 2006; NPS, 2007; NPS, 2011; USA, 1980).

▶ Management effectiveness
 Highly Effective

 Well resourced staff guided by comprehensive set of management plans (NPS, 2001; NPS, 2003; NPS, 2006; NPS, 2007; NPS, 2011; USA, 1980).

▶ Implementation of Committee decisions and recommendations
 Mostly Effective
No concerns.

► **Boundaries**
 Mostly Effective

No problems reported.

► **Sustainable finance**
 Mostly Effective

Business plan of 2003 reported that historical levels of funding were insufficient to cope with increasing costs. Situation has improved since then with a current federal budget of approximately $6.5 million per annum supplemented by about $4.0 million from fees for cave tours and camping. (NPS, 2003; NPS, 2009a).

► **Staff training and development**
 Highly Effective

Highly professional well trained and capable staff resources (IUCN, 1981; USA, 1980).

► **Sustainable use**
 Data Deficient

finance

► **Education and interpretation programs**
 Highly Effective

Excellent visitor centre and learning centre (NPS, 2003; NPS, 2010).

► **Tourism and interpretation**
 Highly Effective

Approximately 650,000 tourists visit the property annually, about two thirds of whom take guided cave tours. Interpretation resources are excellent (NPS, 2003; NPS, 2010).
Monitoring

Highly Effective

Comprehensive monitoring program for ecological indicators, water and air quality, cave environment, fire and visitor use, among others (May et al., 2005; NPS, 2006; NPS, 2007; NPS, 2009; NPS, 2011; Watson, 2005).

Research

Highly Effective

Strong research program involving park scientists and domestic and international researchers. Research results are applied to management intervention (MCNP, 2013).

Overall assessment of protection and management

Mostly Effective

Generally the protection and management of the property is of high standard and very effective. There is strong legal protection at State and Federal level, the property is under public ownership and the stakeholder support is good. The property is well resourced in terms of staff and finance, and management intervention is guided by a series of comprehensive and widely consulted management plans. Monitoring, research, interpretation and education are exemplary. There is some concern over occasional disparity between government ambitions and World Heritage objectives. Of greatest importance for managers is the need to remain vigilant over impacts from urban, industrial and resource development activities outside the property that have the potential to increase above current levels.

Assessment of the effectiveness of protection and management in addressing threats outside the site

Some Concern

There is good communication and collaboration with outside agencies, but evidence that Government development priorities often conflict with park objectives for protection (NPCA, 2013; NPS, 2003; NPS, 2009a; USA, 1980).
State and trend of values

Assessing the current state and trend of values

World Heritage values

▸ Superlative examples of natural features in limestone karst terrain.

Low Concern
Trend: Stable

The general state and trend in scenic and aesthetic values are good, but concerns surround human disturbance to some karst landforms and the growing incidence of atmospheric haze from pollution affecting scenic viewing and visitor enjoyment (AP, 2006; May et al., 2005; MCNP, 2013; NPS, 2007; NPS, 2009; SOC Report, 2002).

▸ The world's largest network of natural limestone caves and underground passages.

Low Concern
Trend: Stable

The state and trend of the karst geological values can be assessed as generally of low concern, but there are growing concerns about modification to natural water flows and deterioration in water quality, from storm water discharge and waste production respectively (AP, 2006; May et al., 2005; MCNP, 2013; NPS, 2007; NPS, 2009; SOC Report, 2002).

▸ The richest known cave biota.

High Concern
Trend: Deteriorating

Of major concern to management is the recent introduction of the deadly white-nose fungal disease, which has the potential to destroy much the bat population in the property (Bell, 2013; NPS, 2010; NPS, 2011).

Other important biodiversity values
Diverse vegetation and abundant wildlife.

Terrestrial vertebrates include 43 species of mammals, 207 birds, 37 reptiles and 27 amphibians. The temperate deciduous oak-hickory forest community includes 84 tree varieties, 28 shrubs and vines, 29 types of ferns, 209 wildflowers, 67 species of algae, 27 species of fungi and 7 species of bryophyte. (USA, 1980; IUCN, 1981; Statement of significance, 2006).

Summary of the Values

Assessment of the current state and trend of World Heritage values
Low Concern
Trend: Stable

Overall the current state of World Heritage values in the property is of low concern and the trend is stable. There is growing concern about air and water pollution impacts. Of greatest concern is the recent incidence of the deadly white-nose fungal disease that has the potential to severely reduce the cave bat population and even eliminate some species.

Assessment of the current state and trend of other important biodiversity values
Low Concern
Trend: Stable

Biodiversity values are not seriously impacted but there are low level concerns about the impacts on plant life from air pollution, caused by neighboring coal-fired power stations, and deterioration in water quality from external pollution sources affecting aquatic biota.

Additional information

Key conservation issues
Disease affecting native bat populations.

National

The deadly fungal white-nose disease, which has had a devastating effect on bat populations throughout much the country, has recently caused deaths among bats in the property. The site managers have prepared a response plan.

Benefits

Understanding Benefits

Is the protected area valued for its nature conservation?

The property protects one of the world’s most significant karst landscapes of international importance to science and conservation.

Importance for research, Contribution to education

The property is of great research interest to the international scientific community and through hosting visitors makes a major contribution to geological interpretation and education.

Outdoor recreation and tourism

The property is a major tourist destination, with benefits flowing to local and regional tourist operators and other related commercial enterprises.

History and tradition

Significant archaeological resources and historical sites have been identified, recovered, recorded and/or curated in the property.

Summary of benefits

The Mammoth Cave National Park World Heritage property not only protects a karst landscape of outstanding universal value, it also makes a significant contribution to geological science through research and education, and to
cultural protection and promotion, while providing economic benefits from tourism.

Projects

Compilation of active conservation projects

<table>
<thead>
<tr>
<th>№</th>
<th>Organization/ individuals</th>
<th>Project duration</th>
<th>Brief description of Active Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>№</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26COM.21.B.28</td>
</tr>
<tr>
<td>10</td>
<td>NPS, 2006. Mammoth Cave National Park, Kentucky, water resources management plan. National Park Service, USDA.</td>
</tr>
<tr>
<td>№</td>
<td>References</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
</tbody>
</table>